1. Increase the rigidity of the part to prevent excessive deformation
In the machining of mechanical parts, the safety performance of the parts is affected by many objective factors. Especially after the parts are heat treated, the parts will be deformed due to stress shrinkage. Therefore, in order to prevent the occurrence of deformation, the technician needs to select a suitable heat-limiting type of treatment to change the rigidity of the part. This requires a combination of the performance of the part and the use of suitable heat-limiting treatment measures to ensure safe and reliable. Even after heat treatment, no significant deformation occurs.
2. Measures to reduce the clamping force
When machining parts with poor rigidity, some measures need to be taken to increase the rigidity of the parts, such as the auxiliary support. Also pay attention to the contact area between the point and the part. According to the different parts, choose different clamping methods. For example, when processing thin-walled parts, you can use elastic shaft device for clamping. Note that the tightening position should be Choose a part with a strong rigidity. For long-axis mechanical parts, both ends can be used. For parts with very long diameters, it is necessary to clamp the two ends together. You cannot use the method of “clamping at one end and hanging at one end”. In addition, in the processing of cast iron parts, the design of the fixture needs to be based on the principle of increasing the rigidity of the cantilever portion. A new type of hydraulic clamping tool can also be used to effectively prevent quality problems caused by the clamping deformation of the part during processing.
3. Reduce cutting force
In the cutting process, it is necessary to closely combine the machining requirements with the angle of cutting to reduce the cutting force. The rake angle and the main declination of the tool can be maximized to make the blade sharp, and a reasonable tool is also crucial for the turning force in turning. For example, in the turning of thin-walled parts, if the front angle is too large, the wedge angle of the tool will be increased, the wear speed will be accelerated, and the deformation and friction will be reduced. The size of the front corner can be selected according to different tools. If a high-speed tool is used, the rake angle is preferably 6° to 30°; if a cemented carbide tool is used, the rake angle is preferably 5° to 20°.
There are many factors that cause the deformation of mechanical parts, and different measures should be taken to solve different reasons. In practice, we must pay attention to every detail of machining, constantly improve the production process, and strive to minimize economic losses, to ensure the stable operation of machinery and equipment, to achieve the high-quality, high-efficiency objectives of machining, thus promoting the machining industry has A better development prospect and a broader market.